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Abstract

Modern processors improve instruction level parallelism by speculation. The outcome of
data and control decisions is predicted, and the operations are speculatively executed and only
committed if the original predictions were correct. There are a number of other ways that
processor resources could be used, such as threading or eager execution. As the use of speculation
increases, we believe more processors will need some form of speculation control to balance the
benefits of speculation against other possible activities.

Confidence estimation is one technique that can be exploited by architects for speculation
control. In this paper, we introduce performance metrics to compare confidence estimation
mechanisms, and argue that these metrics are appropriate for speculation control. We compare
a number of confidence estimation mechanisms, focusing on mechanisms that have a small
implementation cost and gain benefit by exploiting characteristics of branch predictors, such as
clustering of mispredicted branches. _

We compare the performance of the different confidence estimation methods using detailed
pipeline simulations. Using these simulations, we show how to improve some confidence esti-
mators, providing better insight for future investigations comparing and applying confidence
estimators.

1 Introduction

Speculation is a fundamental tool in computer architecture. It allows an architectural implementa-
tion to achieve higher instruction level parallelism, and thus performance, by predicting the outcome
of specific events. Most processors currently implement branch prediction to permit speculative
control-flow; more recent work has focused on predicting data values to reduce data dependencies
[10].



Confidence estimation is a technique for assessing the quality of a particular prediction. Con-
fidence estimation has usually been studied in the context of branch prediction. Jacobsen et al [7]
described a number of uses for confidence estimation: they suggested that it may be used to im-
prove the branch prediction rate, control resource use in a dual-path execution pipeline or control
context switching in a multithreaded processor.

In this paper, we study the design of confidence estimators and make the several contributions.
First, we feel that confidence estimators will usually be used for some form of speculation con-
trol. Previous metrics used to compare confidence estimators would result in inappropriate design
decisions. We introduce standard, consistent metrics to compare the performance of confidence
estimators, and argue that different applications of confidence estimators require different met-
rics. Second, we compare hardware intensive confidence estimators against several less complex
estimators that use existing branch prediction or processor state information. While the complex
implementation has uniformly better performance, the less complex methods have similar perfor-
mance and a significantly reduced implementation cost, making them appealing for many of the
practical cases where confidence estimation would be used. Lastly, our pipeline-level simulations
indicate ways to improve the hardware-intensive confidence estimator in an actual implementation.

In the next section, we describe screening or diagnostic tests, and adopt their terminology
for branch prediction and confidence estimation. In §2, we apply this terminology to confidence
estimation, and conduct a series of measurements to compare different confidence estimators. We
close with a discussion of temporal aspects of branch predictors and how they can be exploited to
improve confidence estimation.

1.1 Diagnostic Tests

The following description is adapted from a paper by Gastwirth [4], as described in [1]. A diagnostic
test is used to determine if an individual belongs to a class D of people that have a particular disease,
or to the class of people who do not have the disease, D. The result of a test places a person either
into the class S, those who are suspected of having the disease, or class §. The accuracy of the
diagnostic test is indicated by two parameters: sensitivity and specificity. The sensitivity is defined
to be SENS = P[S|D], or the probability that a person with the disease is properly diagnosed. The
specificity is SPEC = P[S|D], or the probability that a person who does not have the disease is
correctly diagnosed. For good tests, both SPEC and SENS are close to one.

The problem with all diagnostic tests is that if a disease occurs infrequently, there will be a large
number of “false positives” — the diagnostic test will indicate that a person has the disease when
in fact they do not. This can be expressed as P[S|D] = 1 — P[S|D] = 1 — SPEC. The last metric of
interest is the probability that someone has a disease, p = P[D]. In most tests, we are interested
in the predictive value of a positive test (PvP), which is P[D|S]. The PvP is the probability that
a person has the disease given that a test indicates they might.

Gastwirth cites a study of the ELISA test for AIDS used to screen donated blood, where the
sensitivity was SENS = 0.977, indicating that the test should find samples with the disease, and
the specificity was SPEC = 0.926, indicating that most tests that come back positive would really
have the disease. The large values for SENS and SPEC can be misleading for large populations
or for very rare diseases. For example, assume that only 0.01% of the population actually has
AIDS(p = 0.0001). Then, using the above equation, we compute PvP = P[D|S] = 0.001319.



In other words, even if the diagnostic test indicates you have the disease, there is only a 0.13%
probability that you actually have the disease, simply because the disease is so rare.

So far, we have described parameters of diagnostic tests independently of the cost of different
outcomes. For example, in the ELISA test for AIDS, it is very important to have a high sensitivity
— tainted blood samples shouldn’t be accepted. However, it’s acceptable to have a lower specificity,
because you may be able to use a series of (more expensive) tests to determine if the person really
has the disease.

2 Confidence Estimation as a Diagnostic Test

It is more difficult to compare two confidence estimators than two branch predictors in part because
confidence estimators can be used for a number of purposes while branch predictors are typically
only used to predict the outcome of control-dependent instructions. Most architectures are designed
to use speculation and the general assumption is that “you might as well be doing something”, and
thus each branch is predicted.

By comparison, we think that confidence estimators will normally be used for speculation con-
trol. For example, if a particular branch in a Simultaneous Multithreading [14] processor is of
low confidence, it may be more cost effective to switch threads than speculatively evaluate the
branch. A confidence predictor attempts to corroborate or assess the prediction made by a branch
predictor. Each branch is eventually determined to have been predicted correctly or incorrectly.
For each prediction, the confidence estimator assigns a “high confidence” or “low confidence” to
the prediction. In addition to the standard terminology of diagnostic tests, we have found that
another notation simplifies the comparison of different confidence estimators. We draw a 2 x 2
matrix listing the frequency for each outcome of a test. When we apply this framework to archi-
tectural simulation, each of the quadrants can be directly measured during simulation or analysis.
Typically, we normalize the values to insure that the sum equals one. Thus, our quadrant table for
confidence estimation is:

Prediction Outcome

C I
Confidence HC |Crc | Inc
LC | Crc | Ic

In this table, “C” and “I” refer to “correct” and “incorrect” predictions, respectively, and “HC”
refers to “high confidence” and “LC” to “low confidence”. During a simulation, we can measure
Cuc,Iuc,Crc and Ipc using a branch predictor for each branch and concurrently estimate the
confidence in that branch predictor using a specific confidence estimator. When the branch is
actually resolved, we classify the branch as belonging to class Cgc, Inc,Cre or Irc.

2.1 Metrics for Comparing Confidence Estimators

There are many possible designs for confidence estimators, and we need a consistent method to
compare the effectiveness of two confidence estimators. To date, only Jacobsen et al [7] have



published comparisons of confidence estimators, and their paper considered only two designs. When
converted to our terminology, Jacobsen et al defined the “confidence misprediction rate” as Iyc +
Crc/Cre + Igc + Cre + Ipc. This represents the fraction when the confidence estimator was
wrong or disagreed with the eventual branch outcome. Jacobsen et al also defined the “coverage”
of a confidence predictor as Cr¢ + Irc/Crc + Inc + Cre + I1c.

We believe that when a confidence estimator is applied, the architectural feature using that con-
fidence estimation will either be used for “high confidence” or “low confidence” branches, but not
both. Since the “confidence misprediction rate” includes both outcomes, we felt more effective met-
rics needed to be designed. For example, consider a simultaneous multithreading (SMT) processor
that uses a confidence estimator to determine if a predicted branch is likely to be mispredicted. If
the branch prediction is of “low confidence”, the processor may switch to another available thread
rather than fetch additional instructions from the current thread. The performance of such a pro-
cessor is very sensitive to P[I|LC] = I¢/CLc + ILc, the probability that the branch is incorrectly
predicted if it was low confidence. A high value for P[I|LC] indicates that the processor can switch
contexts only when the following instructions will not commit. A low value of P[I|LC] indicates
that the SMT processor may needlessly switch threads, reducing the performance of the primary
thread. A low value of the SPEC (P[LC|I]) means that the processor will miss some opportunities
to improve aggregate performance by switching threads.

Not all uses of confidence estimators will make the same kind of decisions, but we feel it is most
useful to compare confidence estimators using metrics that reflect how the confidence estimators are
used. For example, SMT processors want a confidence estimator with a large P[I|LC] and a large
P[LC|I]. We have found in our own discussion that terms such as “accuracy” and “coverage” tend
to cause confusion, because accuracy has an inherit implication about the application of a technique.
Thus, we use neutral terms that also have the benefit of being standard terms in statistics. Each
of these metrics is easy to compute, and each is a “higher is better” metric. To simplify discussion,
we assign the following names to these conditions.

Sensitivity: The SENS is P[HC|C] = Cgc/Cuc + Crc, and represents the fraction of correct
predictions identified as “high confidence”. ‘

Predictive value of a Positive Test: The Pvp is P[C|HC] = Cuyc/Crc + Inc and represents the
probability that a high-confidence estimate is correct.

Specificity: The SpEC is P[LC|I] = Irc/Igc + ILc, and represents the fraction of incorrect
predictions identified as “low confidence”.

- Predictive value of a Negative Test: The PVN is P[I|LC] = Irc/CLc + ILc and represents the
probability that the a low-confidence estimate is correct.

There is a natural relation between the SPEC and PVN and the SENS and PvP that can be
clarified by an example. Assume a program executed 100 conditional branches. Of those, 20
are mispredicted. The confidence estimator indicates “high confidence” for 61 of the 80 correctly
predicted branches and 2 of the incorrectly predicted branches. It indicates “low confidence” for
19 of the 80 correctly predicted branches and 18 of the 20 incorrectly predicted branches.



Prediction Outcome

C I
Confidence HC | 61 2
LCc | 19 18

The SENS would be 61 +19 = 76%, and the PVP would be 61 +2 = 97%. A larger SENS indicates
more of the correctly predicted branches are correctly estimated, and a larger PvP indicates that the
conﬁdence estimator doesn’t designate incorrect predictions as “high confidence”. The SPEC would
be m = 90%, indicating that the confidence estimator is good at finding most of the incorrectly
predicted branches. The PvN would be T%E = 49%, indicating that the confidence estimator
is reasonably able to exclude correctly predicted branches. Since branch predictor accuracy is
Cuc + Crc, the SENS and SPEC are independent of the branch predictor accuracy. In other words,
SENS is only a property of correctly predicted branches, and SPEC is only a property of incorrectly
predicted branches.

Figure 1 provides some insight into the relation between the SENS, SPEC, prediction accuracy,
Pvp and PVN. The curves are plotted for values of SENS, SPEC and prediction accuracy (p) that
are representative of the measured values that will be discussed in §3. For a given sensitivity and
prediction accuracy (e.g., [SENS = 70%,p = 70%] and [SENS = 70%,p = 90%]), increasing the
sensitivity will greatly improve the PvP until it reaches an asymptotic limit and then improves
the PvN. Likewise, for a given SPEC and prediction accuracy (e.g., [SPEC = 70%,p = T0%)],
[SPEC = 70%,p = 90%] and [SPEC = 99%, p = 90%]), increasing the SENS improves the PVN. This
improvement is faster if the SENS is high or the branch prediction accuracy is low.

When designing a confidence estimator, we need to understand whether the final application will
be using the PVP or PVN and the importance of the SENS and SPEC to that application. Typically,
we would not want to change the branch prediction accuracy; although we can increase the PvN
by decreasing the prediction accuracy, this would be counter-productive for most applications of
confidence estimation.

2.2 Using confidence estimators

Although the particulars of any given application are beyond the scope of this paper, there are a
number of obvious uses of confidence estimation with associated costs that can illustrate the impor-
tance of the relative values of these metrics. We have described one such application (speculation
control for simultaneous multithreading), and list four others.

Bandwidth multithreading: In a multithreading CPU designed to assume a large number of
threads, the architectural model would be more willing to switch threads if there is any uncertainty
in the outcome of a branch. Unless the confidence estimator returned a “high confidence” estimate,
the architecture would switch threads. Thus, we want a confidence estimator with a high SENs,
meaning that most correct branches are identified as high-confidence, and a high PVP, meaning
that most branches designated as high confidence are predicted correctly.
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Figure 1: Parametric plots showing how the sensitivity (SENS), specificity (SPEC) and branch prediction
accuracy (p) influence the values of Pvp and PVN. Each line shows the value of PvP and PVN when we
hold two values constant and vary the third value. For example, in the right-most curve, the specificity and
branch prediction accuracy are held constant, and we vary the value of the sensitivity. The markers on each

line indicate the decile values of the parameter being varied.



SMT: As mentioned, in this architecture, you could use a confidence estimator to control the
number of instructions issued by individual threads. Since this architecture would err on the side
of speculatively issuing instructions, confidence estimators with a high PVN are very important,
while PVP would be less important. A higher SPEC means that more opportunities for avoiding
wasteful speculation are identified.

Power conservation: In related work [11], we are investigating how to use confidence estimators
to reduce power usage in a processor by suppressing instruction issue following low-confidence
branches. The goals in the power conservation architecture are similar to those of the SMT design,
and we want a confidence estimator with large PvN and SPEC.

Eager Execution: Some proposed architectures evaluate instructions on both paths of a condi-
tional branch [16, 9, 15, 6, 8]. These architectures might use a confidence estimator to determine
when to diverge and evaluate both paths. A confidence estimator with high PvN would indicate
that a low-confidence estimate for a given conditional branch has a high chance of being a mis-
predicted branch and may benefit from eager execution. A higher SPEC would mean that more

opportunities for applying eager execution are found. ‘

Improving Branch Predictors: Jacobsen et al [7] suggested that a confidence estimator could
be used to improve the accuracy of a branch predictor. If the PVN > 50%, then the confidence
estimator can improve the branch prediction accuracy by inverting the outcome of a low-confident
branch. Conversely, if PvP < 50%, then the branch prediction for high-confident branches should
be inverted. We have examined many confidence estimators in many configurations, but have not
found a situation where these conditions hold across a range of programs.

To summarize, in most of these applications, a higher PVN would improve the underlying ar-
chitecture, but none of the applications needing a higher PVN would sacrifice prediction accuracy
to increase the PVN. A higher SPEC would indicate that the architectural optimization (multi-
threading, eager execution, power conservation) might have greater impact because more of the
opportunities where it can be applied are exposed. Our own immediate applications for confidence
estimation (power conservation and eager execution) biased our investigation towards confidence
estimators with a high PvN and SpEC.

3 Comparison of Confidence Estimators

We have implemented four confidence estimators either discussed or implied in existing literature,
and used our performance metrics to compare their performance. Later, we examine the temporal
characteristics of branch predictors and show how those properties can be used to design another
inexpensive confidence estimator.

JRS Estimator: The first method we implemented is one-level resetting counter mechanism
proposed by Jacobsen, Rotenberg, and Smith (JRS) [7]. This predictor uses a miss distance counter
(which we call an MDC) table in addition to the branch predictor. The structure of the confidence
estimator is similar to that of the Gshare predictor. An index is computed using an exclusive-or of
the program address and the branch history register. This index is used to read a value from a table



of MDCs. The width of these counters can vary in size, but we used 4-bit counters as suggested
in [7]. We used a large table containing 4096 4-bit counters. Each time a branch is predicted, the
value of the MDC is compared to a specific threshold. If the value is above that threshold, then
the branch is considered to have high confidence, otherwise it has low confidence. When a branch
resolves, the corresponding confidence counter is incremented if the branch was correct; otherwise,
it is reset to zero. We tried all different threshold levels, and show detailed results for a threshold
of 15 and show the trend for other thresholds. We called this the JRS confidence estimator.

Pattern History Estimator: Lick et al [9, 15] proposed a confidence estimator for dual-path
execution. the confidence estimator was used to determine when dual-path execution should be
used. Although neither of the available papers focused on the confidence estimator itself, the basic
design is described. Lick et al observed that a small number of branch history patterns typically
lead to correct predictions in a branch architecture using a PAs predictor (i.e., a BTB with a branch
history stored for each branch site). The confidence estimator assigned high confidence to a fixed
set of patterns and treated all other patterns as low confidence. Essentially, the patterns were
always taken, almost always taken (once not-taken), always not-taken, almost always not-taken
and alternating taken and not-taken. We called this the pattern history confidence estimator.

Saturating Counters Estimator: The third method we implemented was originally proposed
in an early paper by Smith [13]. Here, we use the state of the saturating counters used in many
branch prediction mechanisms to determine the confidence estimate. For example, in a simple
gshare predictor, branch outcomes are determined by the state of a two-bit counter. We called this
the saturating counters method.

Static Estimator: The last technique uses a static confidence hint. Here, we executed the
program and simulated the underlying branch predictor (e.g., a gshare predictor). We record the
number of correct outcomes for each branch instruction, and then use a “threshold” to determine
confident branches. In our examples, we used a threshold of 90%, meaning that a branch with
> 90% branch prediction accuracy was considered to have high confidence, and all other branches
had low confidence. The results we report are from self-profiled executions where the same input
was used to train and evaluate the confidence predictor. Thus, these results present a best-case
evaluation of this confidence method. We mainly include this technique to indicate its potential.l

3.1 Experimental Methodology

Each of the confidence estimation techniques makes assumptions concerning the underlying branch
predictor. Later, we compare these methods when using a gshare and a McFarling branch predictor
[12]. In each case, the structure of the confidence estimator may change due to the branch predictor,
and we indicate those changes there. We use the SimpleScalar [2] execution-driven simulation
infrastructure to compare the different confidence estimators. Our simulator is an extension of the

Tt is important to note that the “profile” technique cannot use a simple program profile, since the decisions
depend on outcome and state of the branch predictor. Thus, the “profile” technique requires a branch predictor
simulation (which is much slower than a simple profile) or hardware that reports performance information for the
underlying branch predictor, such as the Profile-Me mechanism [3].
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conditional branches __conditional branches
inst. | number misprediction inst.. | number misprediction

(million) | (million) | taken rate (million) | (million)j taken} ~ rate cond.
| application ] gshare| McF. F_SAg i gshare _gshare] McF. | SAg 1 inst. | bra.
compress 804 14.4) 54.6%| 10.1%| 9.9%| 10.1% 108.6 19.4] 50.0%| 16.9%] 17.2%| 19.9% 1.35 1.35
gee 250.9 50.4| 49.0%| 23.9%] 12.2%| 12.8% 455.9 91.0] 49.5%)| 33.5%] 20.9%| 21.6% 1.82 1.81
perl 228.2 43.8[52.6%| 25.9%| 11.4%| 9.2% 402.7 76.5| 52.9%| 34.3%| 18.8%| 16.7% 1.76 1.74
go 548.1 80.3]/ 54.5%| 34.4%| 24.1%)| 25.6%] 1116.3 165.0] 51.4%] 41.1%| 31.8%| 33.5% 2.04 2.06
ma8sksim 416.5 89.8| 71.7%| 8.6%| 47%| 47% 563.3 118.0) 68.8%] 14.9%| 9.1%| 11.8% 1.35 1.31
xlisp 183.3 41.8| 39.5%| 10.2%]| 6.8%| 10.3% 263.6 59.2] 39.8%| 17.8%| 14.4%| 22.3% 1.44 1.42
vortex 180.9 29.1150.1%| 8.3%] 17%| 2.0% 225.6 37.4|48.2%| 15.7%| 4.0%| 41% 1.256 1.29
ipeg 252.0 20.0{ 70.0%]| 12.5%] 10.4%| 10.3% 301.6 28.4| 67.9%] 20.1%| 18.8%]| 17.8% 1.20 1.42
mean 267.6 46.21 54.3%| 14.5%| 8.1%| 8.6% 429.7 74.41 52.8%| 22.5%] 14.6%| 16.2% 1.61 1.61

Table 1: Program characteristics, differentiating between committed instructions and both com-
mitted and uncommitted instructions. The processor will typically issue 20-100% more instructions
than actually commit, due to speculative execution. The values for speculative execution were mea-
sured when using the gshare branch predictor.

sim-outorder simulator, with a 5-stage pipeline and an additional 3 cycle misprediction recovery
penalty.

We use a 64 kB L1 Dcache and a 128 kB L1 Icache?, both with 2 cycle access latency. Our sim-
ulator knows the outcome of all branches at the point of instruction decode, even for branches that
do not actually commit. This includes branches following a mispredicted branch. We essentially
recorded a “speculative trace” for the processor, recording the prediction and eventual outcome of
committed and uncommitted branches. We did this to compare the difference in branch prediction
and confidence estimation for committed and uncommitted branches. When the processor is exe-
cuting a conditional branch, it does not know if a branch will commit or not, so it is important to
understand how all branches are predicted and estimated. It may be that some pattern arises in
the uncommitted branches that would impact confidence estimation. We will always restrict our
discussion to committed instructions unless we indicate otherwise. For example, when we report the
SPEC and PvN for different confidence estimators, we only report these values for the committed
instructions.

We used the SPECint95 benchmarks for our performance evaluation and did not simulate
the SPEC{p95 since those programs typically pose few difficulties for branch predictors. The
benchmarks and important measurements from our simulations are listed in Table 1.

We used three underlying branch predictors to compare the different confidence estimators: a
speculative gshare, a speculative McFarling and a non-speculative SAg [17]. In the first two cases,
the branch history was updated speculatively. Non-speculative update will slightly increase the
branch misprediction rate, since information from recent branches is not immediately available to
succeeding branches. We also wanted to use a speculative PAs or SAg branch predictor architecture,
since this is the case where the history patterns method would have the best performance. The
SAg model is similar to the PAs, which is usually implemented with a branch target buffer, but
the SAg is “tagless” and may alias branch histories. It is difficult to roll back from speculative
history updates in a PAs or SAg predictor, which is why we don’t think high-performance processors
would use a speculative PAs or SAg. Restoring the table at a branch misprediction requires multiple

2The Icache is equivalent to a 64 kB cache, since SimpleScalar has a 64-bit instruction encoding, but we only use
32 bits for each instruction, so half the space is wasted.
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Figure 2: Schematic illustration of the different branch predictors used in this study

Confidence Estimator sén'su ébec “pvp ) p\in ) één's“

pvp _ pvn p
JRS, Threshold >= 15 56% 96% 98% 30%)| | 64% 93% 99% 23%| | 64% 24%
Saturated Counters 88% 42% 88% 41%| | 67% 78% 96% 21%| | 90% 36%
History Pattern 17% 94% 93% 19%] [ 18% 89% 94% 11%| | 73% 26%
Static, Threshold > 90% | 55% 89% 96% 28%| | 72% 88% 98% 26%) | 66% 30%

Table 2: Comparison of Confidence Estimators when using a Gshare, McFarling and SAg branch
predictors

cycles as each non-committed predicted branch restores its old history state in the branch history
table (BHT). Alternatively, the whole BHT could be checkpointed for each predicted branch, and
restored on misprediction. This scheme requires space to store multiple copies of the BHT however.
The SAg is much more expensive to implement than Gshare or McFarling, and only offers similar
performance (see Table 1). ,

Throughout our analysis and comparison, it is important to remember that the JRS estimator is
significantly more expensive to implement than either the saturating counters, the history pattern
or the profile method, since extra tables and state are needed by the JRS estimator.

3.2 Comparison of Confidence Estimators When Using a Gshare Branch Pre-
dictor '

In our first configuration, we used a 4096-entry gshare branch predictor. The JRS confidence
estimator was implemented as described above. We implemented the history pattern confidence
estimator using both the values determined by Lick et al and by repeating their measurements for
the gshare predictor, selecting new “highly confident” patterns. In our presentation, we only show
results using the patterns specified by Lick et al since there appear to be no dominant patterns in
the global history register when using a gshare predictor. The saturating counters method used the
heuristic described above - strongly taken or strongly not-taken branches were considered confident
and all others were not confident. We used a 90% threshold for the static, profile-based technique.

The first column of Table 2 shows the performance of the different confidence estimators when
using the gshare predictor. We report the geometric mean of the sensitivity, specificity, PVP and
PVN for each confidence estimator; detailed information on each application can be found in [5].
The averages are computed from the averages of the original data. In other words, when computing

10



the average for the PVP, we take the mean for Cy¢ and Cr¢ and compute Crrc/Crc +Cre, rather
than averaging the existing PvPp’s.

Unless we consider a specific application for the confidence estimators, it is difficult to select
one estimator over another. In general, the JRS estimator has the highest PVP and an acceptable
PVN, and the profile-based estimator is roughly similar. The saturating counter method has a
better PVN than the JRS or profile method, but at the expense of a lower PVP. This occurs
because the saturating counter method is more sensitive (i.e., reduces the relative value of low-
confidence predictions for correct branches). However, the test is not very specific, and incorrectly
classifies many incorrectly predicted branches as “high confidence” branches. The history pattern
method fares poorly when using this and the McFarling predictors because no dominant patterns
emerge. Since those patterns don’t occur, the history pattern method will classify most branches
as “low confidence”, leading to a low sensitivity. Since most branches are marked “low confidence”,
most of the incorrectly predicted branches will be correctly diagnosed as low confidence.

3.2.1 Enhancing the JRS Estimator

We use an enhanced implementation of the JRS confidence estimator that improves performance.
Rather than use the same branch history to index the branch prediction and MDC table, we first
predict the branch and include that prediction when we index the MDC table. Figure 3 shows
the noticeable performance difference. Each point on the lines indicates the performance when
changing the “threshold” value. This improvement requires reading out both alternative MDC
counters and then selecting the appropriate result when the branch prediction completes. We use
this implementation throughout the remainder of the paper.

Figure 4 shows the PvP and PVN for the JRS estimator for different possible configurations of
the hardware. As before, each line shows the results when we vary the number of the four-bit MDC
entries, and each point on a line indicates the performance when changing the “threshold” value.
The right-most point uses a threshold of 16; since this cannot be reached by a four-bit MDC, all
branches are marked “low confidence”, and the PVN is equal to the misprediction rate.

More branches are marked “low confidence” at a higher threshold. This increases the SPEC, but
also decreases the PVN since more correctly predicted branches are marked as “low confidence”.
Lowering the threshold has the opposite effect: the SENS will increase, but the PvP will decrease.
Selecting the appropriate configuration of the JRS estimator, as with selecting the appropriate
configuration of any estimator, depends very much on the intended application.

3.3 Comparison of Confidence Estimators When Using a McFarling Branch
Predictor '

In the second comparison, we used a McFarling combining predictor that combines the results
from a gshare predictor and a table of two-bit saturating counters indexed only by the program
counter. As indicated in [12], this configuration offers the best performance for the predictor sizes
we are using in this evaluation. The JRS, static and history pattern confidence estimators were
implemented as before. The “saturating counters” method was modified to use information from
both prediction mechanisms in the combining predictor.
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Figure 5: Performance of the Smith confidence estimator when using the McFarling predictor, as
the design parameters are varied.

3.3.1 Saturating Counters Estimator for McFarling Predictors

In the McFarling predictor, two different two-bit counters provide branch predictions, and a “meta-
predictor” chooses between the two predictions. Each component, the gshare or bimodal predictors,
uses a two-bit counter to provide hysteresis in the branch prediction. In the McFarling predictor,
both component predictors are queried for each branch prediction. A third table, the meta-predictor
information, is used to determine which predictor should be used. When the branch actually
commits, both branch predictors are updated. If the component predictor results were different,
the meta predictor moves to re-enforce the use of the correct component predictor. Otherwise the
meta predictor is unchanged.

There are a number of sources of information for the “saturating counters” mechanism. We
found that two techniques work well, and that each has a benefit depending on the desired perfor-
mance metric (PVP or PVN). We are not interested in the direction of a branch prediction, just the
likelihood that the prediction will be correct. Thus, we categorize each branch component predictor
as offering a “strong” or “weak” prediction, where the transitional states in the state machine are
considered “weak” predictions. Ignoring the information from the meta predictor, there are now
four states: (Strong, Strong), (Strong, Weak), (Weak, Strong), (Weak, Weak).

In the “Both Strong” variant, we signal “high confidence” only when both predictors are strongly
biased in the same direction, and “low confidence” otherwise. In the “Either Strong” variant, we
signal “low confidence” only when both branch predictors are in the “weak” state, and high confi-
dence otherwise. Table 2 shows only the “Both Strong” variant to simplify the data presentation.
Table 3 compares the “Both Strong” and “Either Strong” variants. The “Both Strong” method has
a higher SPEC and PVP since only “strongly” predicted branches will be marked as high confidence,
reducing the total number of correctly estimated low-confidence branches. Conversely, the “Either
Strong” method will have a high SENS, lower PvN and higher PVP, since more branches will be
considered “low confidence”. :

We also looked at a number of variations on these techniques which use the saturation state
of only the selected counter to determine the confidence, information from the meta-predictor, or
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Saturated Counters N
Both Strong e Either Strong
application] sens | spec | pvp | pvn | sens | spec | pvp | pvn
compress 68% T77% 96% 21%|| 97% 18% 91% 38%
gcc 54% 80% 95% 20% 96% 15% 89% 36%
perl 52% 83% 96% 18% 96% 17% 90% 36%
go 36% 84% 88% 29% 91% 18% 78% 39%
m88ksim 79% 52% 97% 11% 99% 12% 96% 33%
xlisp 78% 68% 97% 18% 98% 15% 94% 34%
vortex 85% 76% 100% 8% 99% 17% 99% 33%
jpeg 77% 75% 96% 28% 97% 18% 91% 42%
Mean 67% 78% 9%6% 21% 97% 17% 91% 37%

Table 3: Performance of Low-Confidence vs. High-Confidence thresholds with the McFarling
branch predictor

different combinations of the state information. However, these methods generally had a lower
SPEC and PVN. Since we were mainly interested in applications of confidence estimation that
emphasize the SPEC and PVN, we do not include those results in the paper.

The relative merits of the different estimators change when considering the McFarling branch
predictor, as shown in the middle column of Table 2. In this configuration, the JRS, saturating
counter and profile-based techniques are roughly similar. The JRS mechanism is more specific than
the other methods, meaning it will identify more incorrectly predicted branches, but the PVN is
about the same for each of those estimators.

The SPEC of the JRS method decreases when we switch to the McFarling predictor. We believe
this happens because the prediction accuracy is higher, and there are fewer incorrect predictions
to identify. Identifying those few remaining incorrect predictions is more difficult. Essentially, the
branch predictor is finding the easier mispredictions and thus improving the misprediction rate.
The SPEC for the saturating counter estimator improves greatly when compared to the Gshare
predictor, in part because the two-bit predictor in the Gshare has such a low specificity to begin
with. The PvN of all the branch estimators is significantly lower when using the McFarling branch
predictor. In part, this occurs because the underlying branch predictor is more accurate and the
confidence estimator has to work harder to find mispredictions.

Figure 5 shows the performance of the JRS estimator as the hardware configuration is varied.
The trends are similar to that explained in §3.2, but the overall PvN is lower.

3.4 Comparison of Confidence Estimators When Using a SAg Branch Predictor

The third comparison, shown in column three of Table 2, uses a SAg predictor with 2048 branch

history entries and an 8192-entry counter table. Each branch history register was 13 bits long.
Since the counter entries are only two bits, the saturating counters estimation method performs

poorly in this configuration, just as it did when using the Gshare predictor. Similarly, the JRS
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and static estimators have similar performance to that seen when using the gshare predictor. The
performance of the history pattern estimator improves dramatically for SAg, where it performs
roughly equivalent to the static and JRS methods. In addition, it has a much lower implementation
cost than JRS and does not require profiling like the static method. Therefore, the history pattern
estimator is very competitive for a SAg branch predictor.

3.5 Summary of Comparisons

Several observations arise from our comparison of confidence estimation techniques. First, the
performance of a confidence estimator appears to be very dependent on the branch predictor and
confidence estimator having a similar design or indexing method. For example, the JRS estimator
has better performance for the gshare mechanism (to which it is similar) than for the McFarling
predictor, and the History Pattern technique has excellent performance when using a SAg, but poor
performance when using a global history, as in Gshare or McFarling. This indicates that we may be
able to design a better variant of JRS for the McFarling predictor. Second, our improvement to the
JRS method indicates the value of including more recent information in the confidence estimation
process.

Our comparison also shows the value of inexpensive confidence estimators such as static profiling,
the “saturating counters” method, and the History Pattern technique. These methods performed
almost as well as the JRS technique when using different branch predictors, but they require very
little additional hardware to implement. It also shows that it is unlikely, albeit not impossible,
that confidence estimation may be used to directly improve branch prediction, since none of the
confidence estimators we examined had a PVN consistently greater than 50%.

4 Temporal Aspects of Branch Prediction and Confidence Esti-
mation

We originally began studying confidence estimators because we are using them for a number of
applications, including some of those mentioned in §2.2. We wanted to focus on confidence estima-
tors with a low implementation cost. During our investigation, we made a number of observations
concerning the temporal aspects of branch prediction and we have used these observations to design
alternative confidence estimators.

4.1 Branch Misprediction Clustering

If branch mispredictions are clustered, then we may be able to use the distance since the last mispre-
dicted branch as a confidence estimation mechanism. Our measurements confirm the observation
of Heil and Smith [6] that mispredictions in a trace were clustered. However, we have found the
degree of clustering is different when you look at all branches (e.g., during a pipeline-level simula-
tion) or only at the committed branches (e.g., branches in a normal program trace). We use the
information from all branches because that is what is actually of interest to an architect in a real
pipeline or a pipeline level simulation.

Our data shows that mispredictions are tightly clustered, with few branches between mispre-
dicted branches. Heil and Smith [6] plotted the probability distribution function of the branch
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misprediction distance. If branches are independent (and not clustered), that graph has a geo-
metric distribution with a parameter equal to the misprediction rate. We found that presentation
difficult to understand, and found it easier to understand if we plot the data as in Figure 6. In
this figure, we graph the misprediction rate vs. the distance to the previous mispredicted branch.
If mispredictions were not clustered, we would expect the misprediction rates to all be the same,
as indicated by the average lines. Instead, we find that branches immediately following a mispre-
diction are more likely to be mispredicted. In Figure 6, we plot two views of the data from our
simulations. The data marked “all branches” includes both committed and uncommitted branches,
whereas the “committed branches” includes only committed branches. Heil and Smith used a trace
for their analysis, and only report the data for committed branches. We used a gshare branch
predictor to generate the data in Figure 6, but we also used a precise value for the distance to the
previous mispredicted branch — the processor model has complete knowledge of the pipeline state.
Again, this corresponds to the information that would be recorded by a trace when we consider
the committed branches without a pipeline-level simulator. Figure 7 shows a similar plot using the
McFarling branch predictor.

A real architecture determines mispredictions when a branch is resolved, and not when a mis-
prediction is actually made, as in our “precise” model. This will lengthen the time, and thus the
number of branches executed, until the misprediction is actually detected, and should skew the
branch clustering such that it appears to occur over a larger branch distance. Figure 8 shows the
corresponding misprediction rate vs. misprediction distance when we only use information from
resolved branches, using the same gshare branch predictor. Figure 9 shows similar information for
the McFarling branch predictor. As expected, both Figure 8 and Figure 9 still show clustering,
but the results are skewed to higher misprediction distances. Interestingly, the distribution for all
branches using McFarling predictor has a different shape than when using the gshare predictor;
however, the committed branches have a very similar distribution. This occurs because of the
variable time needed to determine if a branch misprediction has occurred.

Precise pipeline information is unavailable to a processor during execution, but it illustrates why
the JRS estimator works. The JRS miss distance counters (MDC) are reset every time a branch
misprediction is detected, and branches are not marked as “high confidence” until several branches
mapping to that MDC register have been correctly predicted. Since branches are clustered, the
“reset and count” insures that enough branches have executed to bypass the cluster of poorly pre-
dictable branches. You can use this same behavior to design a misprediction distance confidence
estimator, which is essentially a JRS confidence estimator with a single MDC register. If more
than a specific number of branches have been fetched since the last resolved (but not necessarily
committed) misprediction, we consider the branch to have “high confidence”. Table 4 shows the
average performance of this technique vs. other confidence estimators, using a range of distance
thresholds. We can vary the distance threshold to achieve different values of SPEC and PvN. Ja-
cobsen et al [7] examined a related configuration, where a global MDC was used to index into a
table of correct-incorrect registers. This solution still has a large MDC table, and [7] primarily
investigated using the global indexing MDC as a way to improve accuracy - they were not looking
for inexpensive confidence estimators. The variation used in [7] probably did not work well for
the reasons illustrated in our earlier data — unless the indexing structure of a table-based confi-
dence estimator matches that of the underlying branch predictor, the performance will suffer. By
comparison, the misprediction distance confidence estimator uses the property that mispredicted
branches are clustered to achieve its performance.
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Confidence |
_ Estimator

JRS Gshare  56%  96%
Satur. Cntrs N.A. Gshare 88% 42%

Static >90% Gshare 55% 89%
Distance > 1 Gshare 86% 36%
Distance > 2 Gshare 77% 56%
Distance >3  Gshare 69% 67%
Distance >4 Gshare 64% 74%
Distance >5 Gshare 59% 78%
Distance > 6 Gshare 55% 81%

Distance >7 Gshare 52% 83%

—— carhg —
Satur. Cntrs  N.A. McFarling 67% 78%

Static > 90% McFarling 72% 88%
Distance >1  McFarling 90% 19%
Distance >2 McFarling 81% 34%
Distance >3 McFarling 75% 46%
Distance >4  McFarling 69% 55%
Distance >5 McFarling 64% 62%
Distance >6 McFarling 60% 67%

>7 McFarling 57%  71%

Table 4: Using misprediction distance as confidence estimator
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We conducted a similar set of experiments to see if confidence estimators also cluster their
“correct” confidence estimates. We measured the JRS estimator with the gshare and McFarling
predictors and the saturating counters estimator with McFarling, and recorded a “mis-estimation
distance” similar to the misprediction distance previously discussed. In each of these configurations,
we found that correct confidence estimations are slightly clustered, but only over large distances -
e.g., the confidence estimations ranged from being correct 45% of the time immediately following
a mis-estimated branch, decaying to a 41% misestimation rate at a distance of four branches and
a 33% misestimation rate for a branch distance greater than 8.

4.2 Using Clustering to Improve Confidence Estimation

Since confidence mis-estimations are only slightly clustered, we can loosely approximate confidence
estimation as a Bernoulli trial, particularly over the small number of branches actually resident in
a pipeline. Doing this, we can boost specific metrics, such as the PVN, by waiting for several low
(or high) confidence events to occur. Recall that PvN = P[I|LC], the probability of an incorrect
prediction given a low-confidence estimation. Now, assume we only consider low confidence esti-
mates - if we see two low-confidence estimates, the probability of both of those estimates being
wrong is 1 — (1 — PVN)2, since the PVN is effectively the probability of being incorrect. In certain
applications, we can use this to “boost” our confidence estimates. For example, two low confidence
estimates from an estimator with a PVN of 30% would have an overall PVN =~ 50%.

Not all applications can benefit from this boosting, because boosting doesn’t identify which of
the two low-confident branches are incorrect. Boosting only indicates the probability that one of
the two branches is incorrect, and thus describes the state of the pipeline rather than the state
of a particular branch. An eager-execution architecture that evaluates multiple paths following
a low-confidence estimate would need to start evaluation down the alternate paths of both of the
low-confidence branches. An SMT processor could use the two low-confidence estimates as evidence
that the instructions from the current thread are unlikely to commit, and switch to an alternate
thread. Likewise, a bandwidth multithreading processor can use boosting with the PVP.

5 Conclusions and Future Work

In this paper, we have focused on developing metrics that can be used to compare confidence es-
timators, and then used those metrics to evaluate different confidence estimators. We have also
improved variants of specialized confidence estimators and shown how existing branch prediction
resources can be used for confidence estimation. Equally important, we have shown that confidence
estimators appear to work best if their structure mimics that of the underlying branch predictor.
Furthermore, our pipeline-level simulations have shown that branch predictors exhibit characteris-
tics, such as clustering, that can be exploited to provide better confidence estimators. This points
out the importance of using pipeline level simulations for this kind of work.

Our motivation for this work is a broad study into speculation control, where we hope to control
how a superscalar processor uses speculative execution. Two applications are described at this
conference. One application involves controlling instruction fetch and issue based on confidence
estimators to reduce power demands in speculative processors [11]. The second involves controlling
variants of eager execution [8]. We are also working on adaptive control of multithreaded pro-
cessors to better utilize processor resources. Each of these applications emphasizes the PVN and
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SPEC metrics, and is very sensitive to the branch prediction accuracy. This study has shown that
as prediction accuracy increases, the PVN decreases in every confidence estimator we examined,
in a large part because there are fewer incorrectly predicted branches to discover. We think most
applications of confidence estimation are going to be similar to our work in speculation control,
and that confidence estimation will be useful even in the presence of highly accurate branch predic-
tors. We have focused on inexpensive mechanisms such as the “saturating counters” method, and
methods to improve those estimates in particular problem domains, such as applying the boosting
techniques to multithreading.

There is considerable work to be done in speculation control, particularly when applied to
eager execution, control of multithreaded processors, control of the memory resources and power
conservation. Speculation control will require better and more precise confidence estimators, and
we look forward to progress in this area. In particular, we are working on an algorithm to “tune”
static confidence estimation to achieve a particular goal for PVN or SPEC. We are also working on
a confidence estimator similar to the JRS mechanism designed to better exploit the structure of
the McFarling two-level branch predictor.
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